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ON THE STABILITY OF THE PERMANENT ROTATIONS 
OF AN ASYMMETRIC HEAVY RIGID BODY*' 

D.V. ANDRHEV 

The permanentrotations around the vertical of an asymmetric heavy rigid body with a 
fixed point are examined. The stability of the rotations are investigated on the 
basis of stability theorems for a Hamiltonian system in the nonresonance case i1,2;' 
and under third- and fourth-order resonances /3/. It is shown that in the nonreson- 
ance case the stability of all, except, perhaps, a finite number, permanent rotations 
is determined by the first approximation. Stability and instability conditions for 
resonance rotations are found. Stability of rotations, in the general case, W?iS 

studied in /4- 7/, in the case of rotations around the principal axes, in /E-lo/, 
and in the case of rotations around axes lying in the principal inertia plane, in 
/ll/. 

1. We consider a heavy body with a fixed point 0 and with principal moments of inertia 
A > B > C for this point. For simplicity we set the product of the body's weight by the 

distance from point Oto the center of mass equal to unity. Let Oqy,z, be a fixed coordinate 
system with the axis Oz, directed vertically upwards and let Ox Y z ,, 0 0 be a coordinate system 
connected with the body's principal axes of inertia for the point 0 If the body executes a 
permanent rotation around the vertical, then the relative position of these systems at the 
initial instant t = 0 is specified by a table of direction cosines {si,}, where nsl =CL, n3*= 

P, n33 = y are constant through the whole rotation time. Together with system Oxdbz0 we 
introduce another system Orr'Yis1' rigidly attached to the body, where 0.~1’ is the permanent 
axis in the body. At any instant the axes of this system are obtained from those of OX,Y,Z, 
by successive turns through the angles: ot +$ around the $-axis, cp around the new position 
2," of the x1-axis, 8 around the y,'-axis. Under a permanent rotation of the body with angu- 
larvelocityotheaxis Oz, coincides with the permanent axis 02,‘. In this case the angles +, 
'p and I3 equal zero and, consequently, are the Lagrange coordinates of the body in perturbed 
motion. We shall investigate the stability of the permanent axis, i.e., the stability with 
respect to the coordinates cp and 8; the coordinate ot fq is cyclic. 

We introduce the variables u1 = sin cp, U? = Co8 'p sin 8, thedimensionless time r = wt and 
the generalized momenta v1t %. We construct the Hamiltonian H'of the variables u,,U~,L'~, vz. 
The function H' has a stationary point u1 = 0, u2 = 0, v1 = am, u2 = ~113. Here and later aij = 

Ani,q, + Bnt, . nj2 + C~snj3, i,j = 1,2, 3 are the components of the body's inertia tensor. We 
introduce the perturbations u~=v~-~~~, uq=vI-am of the momenta and we consider the 
Hamiltonian H=H' - H,,H,, = 3/zas3 i-h of the canonic variables ui, i = 1, . ., 4. We obtain 
the following expansion of Hin a series in powers of Ui : 

and the following nonzero 

H = H, f Ha + ff, + 

Ha=-& 2 ri)Uiujt H3 = 
i.j=I 

H4 = 2 hijk,uQiuIjulkuZ’ 
i+j+k+l=l 

(1.1) 

rll = a2s*b33 + L r12 = as3 h+b13 - a,d+d, rez = als(a&s - 
a,&& + as3 (as3b11 - a13br3) + 2a33 + b, r13 = --a.&3 - 
1, r,4 = -a,&. rzs = a&p --as.&,, rla = 1 - a3& + 

a13b,~, rs3 = b2Zr rsc( = b,,, rd4 = bit, hmo = h 1101 = bm. 

*Prikl.Matem.Mekhan., Vo1.47,No.3,pp.372-377,1983 

316 



317 

while the parameter h is defined /5/ by the relations 

h = A - a,la = B - PO/f3 = C - yoly (1.2) 

where sot B.,, y. are the direction cosines of the radius vector of the body's center of mass 
in the system Ox,y,z,. 

2. We consider the linearized system of equations of perturbed motion of the body, deter- 
mined by Hamiltonian Hz. It has the operational matrix 

(2.1) 

where E is the second-order unit matrix, and the characteristic equation 

(I4 + g,02 + g, = 0 
&?l = rura, - ris2 + r,,r,, - r2a2 + 2 (r12h - r33r14) 

g2 = det II cl II 

(2.2) 

We shall reckon as fulfilled the necessary stability conditions /4/ 

& > 09 g, > 0, BS = &S2 - 4&?, > 0 (2.3) 

and consider the case when form H, is indefinite. In that case Hamiltonian H,is reduced to 
the normal form 

H,' = i/2 (o,P,~, - ~M~Q*) (2.4) 

where w1 >02 are the moduli of the roots of Eq.(2.2) and p1,p2,~,, q2 are the new canonic 
variables. 

Let Fkl (0) (k = 1, . . ., 4) be the cofactor of the 12-th algebraic element in the first row 
of matrix (2.1). We introduce the notation 

fkl = V2Fki (ioi) lo, (02~ - 01~) F,, (ioJl"* 

fk2 = V2Fkl (~2) 102 (02~ - 01') F,, (io2)W 

Q = 1, . . ., 4;i=W) 

The canonic transformation /12/ 

Ui = -fidJ1 -I- fi2P2 - filQ1 + ?,242 (i = 1, * . ., 4) 

normalizing H,, where jkl is the function complex-conjugate to 
as well. In the new variables expansion (1.1) becomes 

fk,, transforms Hs and H, 

(2.5) 

Here 

K 3000 = - j+j+& h*jklfllkf211f31if41j 



while the expressions for the coefficients h'oaoo,K0030r Kex:, are obtained from Koooo by the 
replacements of the sets 

(2.6) 

Further 

(here and henceforth ki is the number of indices vI taking value i). The expressions for 
the coefficients K1200, Kooel, Koo12 are obtained from Kzloo by the replacements (2.6); the ex- 
pression for Klool is obtained simply by replacing fk2 by Tn. The coefficients K,,,,, Kollo, 
K loo2 are obtained by replacements (2.6) from the expression for K2001, Havingnextreplaced 

fk2 by -fkl, we obtain K,olo and Ko,,o from the coefficients K,oo, and Kloon, respective- 
ly, while having replaces fkl by -fkzin the expressions for Kollo and Km10 , we obtain Ko102 
and Koaol. Finally, 

where the inner summation is taken over all permutations of indices 

K 1101? Kralrt KCM are obtained by replacements (2.6) from Kll,o. 
For the normalization of Hamiltonian (2.5) in the nonresonance 

L bill. oaot* We have 

VI, v21 vs. The coefficients 

case we need as well L?,,,, 

I 
L2020 = T hkkkrkr 

c 
Ll~v*v,l fvdf v.1 

v,--1,2,3,4 

where the inner summation is taken over all distinct permutations of the conjugacy symbols 
over the functions fkl- The coefficient Lozo2 is obtained from Lloao by replacing fh., by 

fka and fkl by fkZ. Finally 

where the inner summation is taken over all possible permuations of the indices v*. VP. \):I. 1.4. 

3. If neither one of the conditions 

0, = zClJ*, 01 = 30, (3.1) 

is fulfilled, Hamiltonian (2.5) can be reduced to the form 

According to /13/ 

H = H,' + G,IJ,~~," + %,m2q,q2 + G22~2%2~ + . . . 

G,, = L2020 + o;'(K~oo&soo -I- 3&o~oKm~o) + 341KnloKlon + 

(40, + 300)(& +Na&moKoo~2 + 

(r%, - 40?)(201 - mt)-2 Ko12o~~tm 

G,, = L,,,, + 2w, (20, + oJ-' KY,o,,K,,~.n + 20, (2% + tit)-*)i 

K l?o,,Koc,,z + 30, (20, - oaz)-’ Kzoo,Ko,zo + 2% (2% - 

WI)-’ Kom K,,,, + h-’ (K,,,o K ,I,,, + K,,o,Kmo) + 
202-~ (K,,dbm + Ko,o,Km~) 

Gs2 is obtained from G,,as follows: o1 changes places with 02, in the multi-indices the 

first indices permute with the second and the third with the fourth. On the Stdude cone /14/ 

and on the circle of centers of gravity /4/ we try to pick out axes for which 

W _ G,,w,~ -t 2G120102 + G,,w,? = 0 (3.2) 

According to /l- 3/, rotations around axes lying in the gyroscopic stability domains /4,6,7/ 
will be stable if neither one of the conditions (3.1) and (3.2) is fulfilled for them. It is 

well known /5- 7/ that with each "allowable" axis on the St;iude cone we can associate one-to- 

one a value of the real parameter hdefined by relations (1.2). It can be shown that the 

circle of centers of gravity, as also the St&de cone, can be specified by parameter h if we 

reckon constant not a,,, PO. yo, but a, BY Y. 
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We return to condition (3.2). This is an irrational equation in b. By getting rid of 

the radicals it reduces to an algebraic one. When the a, fi,y are fixed, its degree equals 
176, while for constants a,,po,yo, it does not exceed 28,512. Therefore, the number of axes 

for which the Arnol'd-Moser determinant M'(h) vanishes on the whole St&de cone or on the 

circle of centers of gravity, and, hence, in the gyroscopic stability domains, is a finite 

number. 

4. We pass on to the resonance case and we consider rotations for which one of condi- 
tions (3.1) is fulfilled. We express the squares CIJ~~, mz2 of the frequencies in terms of the 
coefficients of Eq.(2.2) and we substitute these expressions into (3.1). Equations (3.1) take 

the form 
& + gl I’% = 6g,, g, + g, fi = IGg, (4.1) 

It can be shown that each of the Eqs.(4.1) has exactly one root in the gyroscopic stability 
domains for fixed a, P, y, while for constants a,, B0. y. I no more than 20 roots. Consequently, 

to each of the third- and fourth-order resonance relations there corresponds one point each 
on the circle of centers of gravity and no more than 20 axes on the St&de cone. 

In the case of third-order resonance the Hamiltonian (2.5) is reduced to the form /13/ 

(4.2) 

The relations /3/ 

G,,’ = G,, - 20, (~1 - 24-2 K1002~1002 

G 22' = G,, - (302 - 40,) (01 - 2~2)-*Kmos~me 

K 1o,,2 = 0, Gll + 4G12’ + 4G2,’ # 0 (4.3) 

are the stability conditions for the corresponding rotations, and, moreover, the first one of 
them is necessary. To obtain the stability conditions for a concrete resonance rOtati.On the 

coefficients must be computed for values of the parameter h which are corresponding roots of 
the first of Eqs.(4.1). 

In the case of fourth-order resonance the Hamiltonian (2.5) is transformed to 

H = H2’ + Gosmw2S + Gswpc?2s + GsP,2q12 + W2m2m2 + 

G,$.z2q,' + . . .t Gem = &m + 2 (2~1 - ~PKmX,,,, + 
(01 - 2~z)-‘Gmo (Kmo - 2&,,,) + 20, (WI + 202)-~ x 

(.h - 02)-l &~eoK,,oo + wa2-’ (01 - 2~2)-‘Ko,,, Km + 

02-l VGm~Kosoo + &2mKmd 

(4.4) 

When the two inequalities /3/ 

are fulfilled simultaneously the permanent rotations corresponding to fourth-order resonance 
will be unstable; in the case of opposite sign in the second inequality, they are stable. 
Stability is preserved if the right-hand side of the second of inequalities (4.5) is non- 
zero when GOslO= 0. 

The coefficients occurring in formulas (4.3) and (4.5) as functions of the rigid body's 
parameters, for each fixed value of h, are not identically zero. Consequently, conditions 
(4.3), (4.5) impose constraints only of the rigid body's mass distribution. Thus, the stabil- 
ity of all (except, possibly, a finite number) nonresonance rotations is determined by the 
first approximation. The stability of instability of the resonance rotations is determinedby 
coefficients (4.2) and (4.4) from conditions (4.3) and (4.5) and depends only on the rigid 
body's mass distribution. 

The author thanks V.V. Rumiantsev for attention to the work. 
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