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ON THE STABILITY OF THE PERMANENT ROTATIONS
OF AN ASYMMETRIC HEAVY RIGID BODY

D.V. ANDREEV

The permanentrotations around the vertical of an asymmetric heavy rigid body with a
fixed point are examined. The stability of the rotations are investigated on the
basis of stability theorems for a Hamiltonian system in the nonrescnance case /1,2/
and under third- and fourth-order resonances /3/. It is shown that in the nonreson-
ance case the stability of all, except, perhaps, a finite number, permanent rotations
is determined by the first approximation. Stability and instability conditions for
resonance rotations are found. Stability of rotations, in the general case, was
studied in /4-7/, in the case of rotations around the principal axes, in /8- 10/,
and in the case of rotations around axes lying in the principal inertia plane, in

/11/.

1. We consider a heavy body with a fixed point O and with principal moments of inertia
A > B > C for this point. For simplicity we set the product of the body's weight by the
distance from point O to the center of mass equal to unity. Let Oz4,7; be a fixed coordinate
system with the axis Oz directed vertically upwards and let Oz,¥s%s be a coordinate system
connected with the body's principal axes of inertia for the point O If the body executes a
permanent rotation around the vertical, then the relative position of these systems at the
initial instant ¢ =0 is specified by a table of direction cosines {n;;}, where ny = @, fgs =
B, nss =y are constant through the whole rotation time. Together with system  OzgyeZe we
introduce another system Oz'yyz)’ rigidly attached to the body, where Oz is the permanent
axis in the body. At any instant the axes of this system are obtained from those of Ox;y3
by successive turns through the angles: ¢ + Y around the 2 -axis, ¢ around the new position
z," of the z,-axis, 0 around the y,"-axis. Under a permanent rotation of the body with angu-~
lar velocity @the axis Oz, coincides with the permanent axis Oz . In this case the angles 1,
¢ and O equal zero and, consequently, are the Lagrange coordinates of the body in perturbed
motion. We shall investigate the stability of the permanent axis, i.e., the stability with
respect to the coordinates ¢ and 0; the coordinate ! 419 is cyclic.

We introduce the variables u, = sin @, u, = €08 ¢ sin 8, the dimensionless time T = @t and
the generalized momenta v, v,. We construct the Hamiltonian H' of the variables u;, Uy, Uy, Us.
The function H’ has a stationary point u; =0, uy = 0, v, = a3, ¥, = ay3. Here and later g;; =
Anynyy + Bngy - nj + Cngny, 4,7 =1,2, 3 are the components of the body’s inertia tensor. We
introduce the perturbations Us == U, — Qg3, Uy =V, — @13 of the momenta and we consider the
Hamiltonian H == H' — H,, Hy = 3,a53 + A of the canonic variables u, i =1,..., 4. We obtain
the following expansion of H in a series in powers of u; :

H=H,+H; -~ H, ~... (1.1)
3
1 i3, kot
H2=~—2— Zr“uiuj. H3= 2 hij“u;; Ug'Uy Ug
i,j=1 itj+kHi=3
Hy= 2 h,-j,,,us‘u,’ul"uzl
iR =1

and the following nonzero hijy and ri

Fip = Ggs®bay + A, Fip = Gy (B3sbis — @1abas), Ty = @13 (@ssbis —
ay3bas) + ass (@asby — @isbis) + 2aas + A, g = —aasbes —
1, ry = —8asbis, Tas = Gyabya — agsbyp, Tya = 1 — assby +-

@ysbya, TFaaz = bsay rag = bpzy e = bis  hyoro = Puror = by
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h0201 = —hyy = —bisy  Byoor = —hou = ay3bss — a3by3,
Rioae = @yabss < Basbyss hionn = —@sbssy Rorze = @sabis: Reero =
@y (—@a3bas + Y/3)s Rope = Yalws, hooos = — /2813, Roeo =
asshagor — Yalazs hiize = Parer = —2b1as Rorae = oz = @aabia,
hi0s1 = —a13bys — assbys, Rioes = @sabyy — Arabys, Paeso = bz — bags
hgoos = —Dbaay Pozeo = —buy hoger = bag — by, Ay = —2bss,
hiose = 1 - agsbes — 2a33bys, hyory = 1 + uabys, hoyey = —1—

- 2

@13bia — 2a33b3a. hores = @ssby — @yabis — 1, Rgese = @23°bas +
— 1

Yy (M — ass), Room = 2033823b13: Roozz = 2033he10s + My (A — ags),

hosos = Yy (A — ags)

Here
by = (ABCYt (BCnyny) + ACnyany, + ABnyangs); i, j =1,2,3
while the parameter A is defined /5/ by the relations
A=A —qyla =B — Be/B = C — yo/¥ (1.2)

where @, Bo. yo are the direction cosines of the radius vector of the body's center of mass
in the system OzyYoZo-

2. We consider the linearized system of equations of perturbed motion of the body, deter-
mined by Hamiltonian H,. It has the operational matrix

0 E
A(D)y=|ri;|| + 3D, J=“__E oﬂ (2.1)
where E is the second-order unit matrix, and the characteristic equation
o' + 210" + gp = (2.2)
§1 = Iilss — Tis® + TagTaa — Tag® + 2 (Prefag — TosTaa)
g = det [ ry|

We shall reckon as fulfilled the necessary stability conditions /4/
6>0, >0, gg=g°—45>0 (2.3)

and consider the case when form H, is indefinite. In that case Hamiltonian H, is reduced to
the normal form
Hy = il2 (0,p1q1 — ©3Pe:) (2.4)

where @, > ®,; are the moduli of the roots of Eq.(2.2) and p,, p,, q1, g, are the new canonic
variables.

Let Fiy (D) (k=1,...,4) be the cofactor of the k-th algebraic element in the first row
of matrix (2.1). We introduce the notation

fr1 = YoFu (i01) [01 (02 — ©,%) Fyy (fo,)l2s
Trz = YoF gy (i) [y (0,° — @12) Fyy (iw )1
k=1,..,4i=V-1
The canonic transformation /12/
= —fuby T fuoPr — Fugr + Fiats G=1,...,4)

normalizing H,, where f,; is the function complex-conjugate to fri+ transforms Hs; and H,
as well. In the new variables expansion (l.l) becomes

H=H, - Kiuplpiale Liaplpig et + ... 2.5)
2 ;+;+‘§+z=s kiPy P Q2 +i+j+§+l=4 iskiPy Pe’qr g2 + (
Here

Kyoo=— Byyafu"fan'fa'fa’

itk imed
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while the expressions for the coefficients  Kjysge, Kooze: Kooos are obtained from Kip by the
replacements of the sets

{frts Fras Frs Fia) by (—fr2s — frry — Frzs — fr1) (2.6)
(Frrs Fros Fers Fre) BY (Frrs Fren i1 Fr)
(Fxrs Frzs Fras Fro) ©Y (— Fros — Frrs — free — 1)

Further
Kawe= 2 ‘g (fvafvafva + Fsifvafva + fuafuaf vit)

v=1,2,3,4

(here and henceforth %; is the number of indices v, taking value {). The expressions for
the coefficients Koo Koozrr Kooz are obtained from K,,, by the replacements (2.6); the ex-
pression for Ky is obtained simply by replacing fi, by fy;. The coefficients Koygey Koreo
K093 are cbtained by replacements (2.6) from the expression for Kygg. Having next replaced
frs by —Ffx, we obtain K,4, and Kg from the coefficients XKape and Kooz, respective-
ly, while having replaces f,, by —f,;in the expressions for K,y and Koe , we obtain Ky
and Kgge. Finally,

Kjo= 2 hk.k.hk. 21 f v-lf vglf Vi1

Vl=l.2.3.l

where the inner summation is taken over all permutations of indices wv,;, v,, v;. The coefficients
Ki101» Kionn» Koxu are obtained by replacements (2.6) from K-

For the normalization of Hamiltonian (2.5) in the nonresonance case we need as well Lggaq.
Lggoss L. We have

Lapop = % Z P ki Z Frafvafvafva

vp=1,2,8,4

where the inner summation is taken over all distinct permutations of the conjugacy symbols
over the functions f,;. The coefficient Ly, is obtained from L,y by replacing f;, by
fra and fu by fre. Finally

Ly == 2! hkdnhh Z f wlf Vzlf v.zf vi2
v;=1,2,3,4
where the inner summation is taken over all possible permuations of the indices v, v, vi. vy
3. 1If neither one of the conditions
@ = 20z, ©; = 30, (3.1)

is fulfilled, Hamiltonian {(2.5) can be reduced to the form

H = H, + Gup*9® + 262p1p2q19: + Gpplg + . ..
According to /13/

Guy = Laoso + o1 (KsoooKosoo + 3K2010K1020) + 3003 Kp110K 1011 +
(401 + 3we) (2001 4+ @2)7? Kz100K o012 +
(3wy — 4ms) (200 — @3)™2 Kog120K 2010

G = Ly + 20, Co, + 0)7* KypoKosn + 20; 2o, + @)% x
Kiz00Ko012 + 20, (20, — 03)7 Koo Korzo + 20: 2oz —
1)7% Kog10Ki00: + 2017 (Koo Kont + KnanKiezo) +
2w, (K1110Ko10: + KozorA1on1)

G,y is obtained from G, as follows: a,; changes places with ,, in the multi-indices the
first indices permute with the second and the third with the fourth. On the Stdude cone /14/
and on the circle of centers of gravity /4/ we try to pick out axes for which

W = Guw® -+ 2G100,0; + Gayoe® = 0 (3.2)

According to /l1— 3/, rotations around axes lying in the gyroscopic stability domains /4,6,7/
will be stable if neither one of the conditions (3.1) and (3.2) is fulfilled for them. It is
well known /5-— 7/ that with each "allowable" axis on the stdude cone we can associate one-to-
one a value of the real parameter A defined by relations (1.2). It can be shown that the
circle of centers of gravity, as also the StAude cone, can be specified by parameter A if we
reckon constant not ag, B, Vo, bPut o, B, y.
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We return to condition (3.2). This is an irrational equation in A. By getting rid of
the radicals it reduces to an algebraic one. When the a,fi,y are fixed, its degree equals
176, while for constants oy, Py, Yo, it does not exceed 28,512. Therefore, the number of axes
for which the Arnol'd- Moser determinant W (A) vanishes on the whole Stdude cone or on the
circle of centers of gravity, and, hence, in the gyroscopic stability domains, is a finite
number.

4. Ve pass on to the resonance case and we consider rotations for which one of condi-

tions (3.1) is fulfilled. We express the squares ,?, ®,*® of the frequencies in terms of the
coefficients of Eq.(2.2) and we substitute these expressions into (3.1). Equations (3.1) take

the form
g + &1V g = 6gs, g+ & Vs = 16g, (4.1)

It can be shown that each of the Egs.(4.l) has exactly one root in the gyroscopic stability
domains for fixed «,p,y, while for constants @, fig, Yo, No more than 20 roots. Consequently,
to each of the third- and fourth-order resonance relations there corresponds one point each
on the circle of centers of gravity and no more than 20 axes on the Stiude cone.

In the case of third-order resonance the Hamiltonian (2.5) is reduced to the form /13/

H=H,' + Ki002P192* + K100aP2q1 + (2.2)
Gup:®gi® + 261 Prpagage + Gae'po’ge® - - .«
Kiooe = — E hklk"\‘]kg (f\'ﬂfv:zf—v.z +

v;=1,2,8,4

Fuafvafue + Foafvafoa)
Gy’ = Gy — 20, (©; — 20,3)™% K1902K 1002
Gy’ = Gy — (30 — 400y) (@1 — 2w2) %K ;100K 1002
The relations /3/

Kigoe = 0, Guy + 4Gy," + 4Gy, 5= 0 (4.3)

are the stability conditions for the corresponding rotations, and, moreover, the first one of
them is necessary. To obtain the stability conditions for a concrete resonance rotation the
coefficients must be computed for values of the parameter A which are corresponding roots of
the first of Egs. (4.1).

In the case of fourth-order resonance the Hamiltonian (2.5) is transformed to

H = Hy' + Gospoq1pe® + Gosrolr@® + Gup’p® + 2G P Pand; + (4.4)
Goop?g® + .« oy Gosro = Losio + 2 (201 — @) Ky300K 0120 +
() — 205) Komo (K110 — 2Kp201) + 20, (07 + 20,)7 X
(201 — @o)™ Ko20K 1300 + 010277 (@) — 204) K og10 Ki1z0 +
0 (K111 Kosoo + Kozo&1110)

When the two inequalities /3/
Gosio %= 0, 1 1Gesyo | > | Gy + 6Gyy + 9Gyp | (4.5)

are fulfilled simultaneously the permanent rotations corresponding to fourth-order resonance
will be unstable; in the case of oppdsite sign in the second inequality, they are stable.
Stability is preserved if the right~hand side of the second of inequalities (4.5) 1is non-
zero when Geo=0.

The coefficients occurring in formulas (4.3) and (4.5) as functions of the rigid body's
parameters, for each fixed value of A, are not identically zero. Consequently, conditions
(4.3), (4.5) impose constraints only of the rigid body's mass distribution. Thus, the stabil-
ity of all (except, possibly, a finite number) nonresonance rotations is determined by the
first approximation. The stability of instability of the resonance rotations is determinedby

coefficients (4.2) and (4.4) from conditions (4.3) and (4.5) and depends only on the rigid
body's mass distribution.

The author thanks V.V. Rumiantsev for attention to the work.
REFERENCES

1. ARNOL'D V.I., Small denominators and stability problems in classical and celestial mechan-
ics. Uspekhi Matem. Nauk, Vol.18, No.6, 1963.



320

8.
9.
1o.
11.
12.

13.
l4.

MOSER J.K., Lectures on Hamiltonian Systems. Providence, RI. American Mathematical Society,
1968. .

MARKEEV A.P., On stability of a canonical system with two degrees of freedom in the pres-
ence of resonance. PMM Vol.32, No.4, 1968,

GRAMMEL'R., Der Kreisel, seine Theorie und seine Anwendungen. Zweite, neubearbeitete Auflage.
Erster Band: Die Theorie des Kreisels. Berlin~G¥ttingen-Heidelberg, Springer-Verlag, 1950.
(The Gyroscope, Its Theory and Application, Vol.l).

RUMIANTSEV V.V., Stability of permanent rotations of a heavy rigid body. PMM Vol.20, No.l,
1956.

RUBANOVSKII V.N., On bifurcations and stability of steady-state motions of systems with
known first integrals. In: Problems in the Investigation of Stability and Motion Stabil-~
ization. Moscow, Vychisl. Tsentr Akad. Nauk SSSR, No.1l, 1975.

RUBANOVSKII V.N., On bifurcations and stability of permanent rotations of a rigid body in
the case when its center of mass lies close to the principle inertia plane. In: Problems
in the Investigation of Stability and Motion Stabilization. Moscow, Vychisl. Tsentr Akad.
Nauk SSSR, 1982.

KOVALEV A.M. and SAVCHENKO A.Ia., Stability of uniform rotations of a rigid body about a
principal axis. PMM Vol.39, No.4, 1975.

SERGEEV V.S., On the stability of the permanent rotations of a heavy solid body around a
fixed point. PMM Vol,40, No.3, 1976.

CHUDNENKO A.N., On stability of the uniform rotations of a rigid body around the principal
axis. PMM Vol.44, No.2, 1980.

BELIKOV S.A., On the stability of permanent rotations of a rigid body around nonprincipal
axis in a Newtonian force field. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.l, 1982.

BULGAKOV B.V., On normal coordinates. PMM Vol.1lO, No.2, 1946.

BIRKHOFF G.D., Dynamical Systems. Providence, RI, American Mathematical Scociety, 1966.
STRUDE ©., ber permanente Rotationsachen bei der Bewegung eines schweren Kdrpers um einen
festen. Punkt. J. reine und angew. Mathe., B.l113, 1894.

Translated by N.H.C.



